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Abstract. The complete eight-parameter symmetry group of the one-dimensional 
harmonic oscillator is investigated using the fact that the system is describable by a 
variational principle. It is found that only a five-parameter subgroup leaves the 
action integral invariant, thus yielding five conserved quantities, only two of which are 
functionally independent. These two conserved quantities determine the solutions, 
and correspond to a two-parameter Abelian subgroup. We also show that if a conserved 
quantity corresponds to a symmetry group by Noether’s theorem, then the group trans- 
forms any solution into another solution possessing the same value of the conserved 
quantity. In addition, we find how the Lagrangian transforms under symmetry groups 
which do not preserve the action integral, leading to certain alternative Lagrangians for 
the harmonic oscillator. 

1. Introduction 

The complete symmetry group of the one-dimensional harmonic oscillator has 
recently been discussed by several authors (Anderson and Davison 1974, Wulfman 
and Wybourne 1976) and has been shown to be the eight-parameter Lie group 
SL(3, R). This work was carried out using the Lie theory of extended groups (Lie 
1891, 1922, Cohen 1931) to study the invariance of the equation of motion. In this 
paper we show that additional insight is obtainable by utilising the fact that the 
harmonic oscillator equation is derivable from a variational principle. In particular, 
since Noether’s theorem (Noether 1918) states that there is a close connection 
between the conservation laws and the symmetry properties of a system describable 
by a Lagrangian, it seems natural to attempt to correlate the conserved quantities for 
the harmonic oscillator with the group SL(3, R) mentioned above. We will find that 
only a certain five-parameter subgroup of SL(3, R) leads to conserved quantities via 
Noether’s theorem, and of the five resulting constants of the motion, only two are 
functionally independent. These two independent constants of the motion correspond 
to a two-parameter Abelian subgroup of the five-parameter group, and are sufficient 
to determine the harmonic oscillator solutions. It thus appears that knowledge of the 
Abelian subgroup suffices to completely describe the harmonic oscillator. 

These results are related to the fact that Noether’s theorem associates a conserved 
quantity with each one-parameter group that leaves the action integral invariant. 
Although the full eight-parameter symmetry group leaves the equation of motion 
invariant, only the five-parameter subgroup satisfies the more stringent condition of 
preserving the action integral. 
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The invariance of the action integral requires certain transformation properties of 
the Lagrangian itself. We investigate the way the Lagrangian transforms under those 
groups which preserve the equation of motion but not the action integral, and show 
that these considerations lead to various alternative forms for the harmonic oscillator 
Lagrangian. In addition, we will use the Lagrangian formalism to derive the full 
symmetry group for the harmonic oscillator. 

Another aspect of our investigation concerns the transformation properties of 
harmonic oscillator solutions. It is known that if a differential equation is invariant 
under the action of a group, then the group transforms solutions into solutions. 
Wulfman and Wybourne (1976) have given specific examples of the manner in which 
harmonic oscillator solutions are transformed among themselves by the action of the 
symmetry group. We supplement their conclusions by showing that if a conserved 
quantity corresponds to a symmetry group by virtue of Noether's theorem, then the 
symmetry group transforms any solution into another solution possessing the same 
value of the conserved quantity. This provides a criterion for deciding whether 
solutions are transformable into one another by an element of the five-parameter 
subgroup. 

2. Symmetries and conserved quantities 

For the sake of completeness, and to establish notation, we give in this section a brief 
outline of the theory of symmetry groups and conserved quantities. Since we are 
interested here primarily in the one-dimensional harmonic oscillator, we shall limit 
ourselves to Lagrangians dependent only on one space coordinate and time. 

Let a physical system be described by a Lagrangian L(4,4, t )  and let the action 
integral be 

A = [:' U q ,  4, t )  dt, (1) 

where the integration is along a curve 4 = 4( t ) .  Consider a one-parameter Lie group 
of transformations from the (4, t )  variables to the (Q, T) variables, whose infinitesimal 
generator is the operator 

The finite transformations of the group may be given in the form (taking into account 
the effect on the time derivatives of 4): 
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with 

The operator E is the generator of the first extended group (Lie 1891, 1922, Cohen 
1931), which gives the change induced in a function of q, 4, t by the action of the 
original group on q and t. If the variables q, 4, t in (1) are replaced by their 
expressions in terms of Q, Q, T, the action integral becomes 

where the new Lagrangian is given by 

If it turns out that 

L‘(Q, Q, T, e ) =  L(Q, 0, T), (8) 
then the action integral is said to be invariant, and the group transforms solutions of 
the Euler equation into solutions. In fact, solutions are transformed into solutions 
even if the more general condition 

i(Q, Q, T, e)=  L(Q, Q, T)+P(Q, T, 0 )  (9) 
holds, since the Euler equation is unaffected by the addition of a total time derivative 
to the Lagrangian. We therefore take (9) as our general definition of the invariance of 
the action integral. 

Noether’s theorem, applied to our case, states that whenever the action integral is 
invariant under the group (3), the solutions to Euler’s equation admit the conserved 
quantity 

where f is a function of q and t. The proof of this theorem is generally carried out 
using the calculus of variations (Gelfand and Fomin 1963); however, for our present 
purposes it is more convenient to assume the above form for @ and verify explicitly 
that it is a conserved quantity. Thus, if @ is differentiated totally with respect to t, we 
obtain the identity 

& = ( ( 5 4 - 7 7 ) % - ~ { ~ } - / ~ + f ,  (1 1) 
where 

and 
aL aL . aL 

E{L} = 6- + 77- + (7j - 45)-. 
at aq a4 
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If the Euler equation is satisfied (i.e. 9= 0) and if 5 and 77 can be chosen such that 

E{L)= -(L+f,  (14) 

& = O ,  (15) 

then 

and @ is a constant of the motion. Equation (14) can be regarded as a specification of 
the way the function L(4,4 ,  t )  must transform under the action of the group if @ is to 
be a constant of the motion. The relation between the condition (14) and the 
invariance of the action integral is easily found. If equation (9) is expanded to first 
order in 8 (using (7) for f) we obtain 

L - + &)+ . . . = L + e t + .  . . . (16) 
Equating coefficients of 0 yields equation (14). 

To conclude this section, we prove that 

E{@} = 0. (17) 

The significance of this result has to do with the transformation properties of solutions 
under the action of the group. The operator E acting on @(q, 4, t )  gives the change in 
@ (to first order) resulting from the action of the symmetry group on the variables 4, t. 
But the symmetry group transforms a solution into a solution, so that E{@} measures 
the change in the conserved quantity @ due to the replacement of one solution by 
another. If (17) holds, we may then conclude that any two solutions related by the 
given symmetry group possess the same value of the associated conserved quantity. 

The proof of (17) is carried out by an explicit application of the operator E to the 
conserved quantity @. Using (14) and the easily proven identity 

we obtain 

Expanding the total time derivatives, using ( 5 ) ,  we find eventually that each of the 
quantities in rectangular brackets vanishes; thus (17) is proved. 

3. Conserved quantities for the harmonic oscillator 

If the Lagrangian of a system is known, then (14) may be regarded as the condition on 
((4, r )  and 77(4, t )  which ensures that (2) generates a symmetry group for the system, 
and that (10) is the associated constant of the motion. For the harmonic oscillator 

(19) 
2 2  L = 4  - 4 ,  
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so that ( 1 4 )  takes the form 

Equating to zero the coefficients of powers of 4 leads to a system of four partial 
differential equations, which can easily be shown to have the solution 

v(q, t )  = (G cos 2t - H  sin 2t )q  + E  cos t + F sin r, 

f(q, t ) =  (G sin 2 t + H  cos 2 t ) + C ,  

f (q ,  t )  = -2(G sin 2t + H  cos 2t )q2  + (F cos t - E  sin t)2q. 

( 2 1 )  

( 2 2 )  

(23 )  

The quantities G, H, E, F, and C are arbitrary constants. We therefore have a 
five-parameter set of solutions, from which we can construct five linearly independent 
group generators, each of the form [ (a /a t )+  v(a/aq): 

a a 
at a4 

a a 
at a4 

GI = (sin 2t)-+ (q cos 2t)-, 

G2 = (cos 2 t ) - -  (q sin 2 t ) - ,  

a 
aq 

G3 = (COS t)-, 

a 
aq 

G4 = (sin t)-, 

a 
G5=-$ 

These operators generate a five-parameter Lie group, as can be deduced from the 
commutation relations: 

To each of the one-parameter subgroups corresponds a constant of the motion given 
by (13) ;  explicitly we have 

~ 1 = ( 4 ~ - q ~ ) s i n 2 t - ~ q c j   COS^^, 

~ z = ( c j ~ - q ~ ) c o s 2 t + 2 q q  sin2t, 

C3 = -24 cos t - 24 sin t, 

C4 = -2q sin t + 24 cos t, 

c5=42+q2. 
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At most two of these conserved quantities are independent; if we choose C3 and C4 as 
the independent quantities, it is easy to show that 

c -1 
c1= act: - c:), 
c -1 

5 - 4c: + c.3. 

1 - 2 c 3 c 4 ,  

Eliminating 4 between C3 and C4 yields 

q = 52, cos t - tc3 sin t, (28) 
which is the general solution for the harmonic oscillator. Thus, the one-dimensional 
harmonic oscillator is completely specified by the two-parameter Abelian symmetry 
group generated by G3 and G4. 

We have previously shown that two solutions connected by a symmetry trans- 
formation possess the same value of the associated constant of the motion. We 
illustrate this for the transformation generated by G4, for which the group operator is 
ee(sin t)a/aq 

Let 
q - A  cos t - B  sin t = 0 

be the general solution of the harmonic oscillator; then 

(q - A  cos t - B  sin t )  = q - A  cos t +  (8 - B )  sin t .  (30) 
e@(sinr!d/aq 

Thus the group transforms a given solution into another solution possessing the sa tm 
value of A. But the relevant constant of the motion is C4, and using (29) we may show 
that C4 = 2A. It therefore follows that the value of the conserved quantity is main- 
tained under the symmetry transformation. 

4. The complete symmetry group 

In the previous section we have seen that a search for harmonic oscillator symmetry 
transformations via Noether’s theorem leads to a certain five-parameter Lie group. 
However, it is known (Anderson and Davison 1974, Wulfman and Wybourne 1976) 
that the complete symmetry group of the harmonic oscillator is an eight-parameter 
group. Thus there must exist, in addition to the original five-parameter group, three 
additional one-parameter groups which transform solutions into solutions, but for 
which the transformation properties of the Lagrangian are such that (9) and (14) no 
longer hold. The complete symmetry group was first derived by Anderson (Anderson 
and Davison 1974) usicg Lie’s method of extended groups; here we will use the 
Lagrangian formalism for this purpose. We will also determine the transformation 
properties of the Lagrangian under the three additional groups, and show that the 
procedure leads to certain alternative Lagrangians for the harmonic oscillator. 

Consider the symmetry group whose generator is (2), and for which the generator 
of the first extended group is (4). Since the group transforms solutions into solutions, 
the Euler expression for the new Lagrangian (see equation (7)) must be a multiple of 
the Euler expression for L ;  that is, we must have 
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From the left-hand side of equation (16)  we obtain, to first order in 8 :  

i = L - eL', ( 3 2 a )  

where 

L' = E{L} + (L. 

Using (32a)  in (31),  and again retaining only first-order terms, we find 

The expression (33),  with L' given by (326),  will now be utilised to derive the full 
eight-parameter symmetry group of the harmonic oscillator. (For notational consis- 
tency with § 3, we now revert to the use of lower case symbols q, 4, t.) 

For the harmonic oscillator we have 

L = 4 2 -  4 2 ,  (34)  

E{L} = 247j - 2q77 - 2&j2 .  (36)  

L ' = 2 q + - 2 q ~ - ( q z - ( q z .  (37)  

Using (32b)  we obtain 

After some calculation, it can be shown that, for L' given by (37): 

d aL' aL 
d t ( a 4 )  dq 
- - -- 

= (4774 -25, -65&)(@ + q )  + [2qrr +495t + 277 -2qqqI 

+[477tq -2&+6qtq14+[271, -4614z+[-254,143. (38)  
It is clear that in order for (33)  to be satisfied, each of the four square brackets in (38)  
must vanish. This yields a system of four partial differential equations possessing the 
eight-parameter solution 

5 = ( A  cos t + B sin t)q + (G sin 2t + H cos 2 t )  + C, 
77 = ( - A  s i n t + B  cost)qz+(Gcos2t-Hsin2t)q+Dq+(Ecost+Fsint) .  (40)  

(39)  

From this solution we can construct eight linearly independent group generators, 
consisting of the previously defined operators G I ,  Gz, G3, Gq, Gs, plus the three 
additional operators 

a a G7 = (q  sin t)-+ (4' cos t)- ,  
at aq 
a a 

G s = ( q  cost)--(qzsint)-. 
at a4 

(43)  

These eight operators generate an eight-parameter Lie group, as can be verified by 
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considering the following commutation relations, in conjunction with those of (25 ) :  

The operators G I  to G8 may be expressed as linear combinations of the operators 
XI ,  X2, . . . , X8 found by Wulfman and Wybourne (1976), who also showed that the 
Xi generate the global Lie group SL(3, R). 

It is perhaps of interest here to briefly compare the two methods of deriving the 
full symmetry group; namely: the Lagrangian formalism, and the Lie method of 
extended groups. For the Lie method it is necessary to calculate the generators of 
both the first and second extended groups, whereas the Lagrangian approach requires 
only E(q, 4, t ) ,  the generator of the first extended group. The reason for the dis- 
tinction lies in the fact that the Lie method investigates directly the transformation 
properties of the Euler differential equation, which contains a second derivative. The 
Lagrangian approach, on the other hand, deals with the transformation properties of 
the Lagrangian, which contains only a first derivative. Both methods, of course, lead 
to the same set of partial differential equations having the solution (39), (40). 

From (44a) we note that the operators G6, G7, and G8 generate a subgroup of the 
full symmetry group; from our method of derivation it is clear that this subgroup 
contains all symmetry transformations which do not lead to conserved quantities via 
Noether’s theorem. In particular, the transformation properties of the Lagrangian 
which are specified by (9) and (14) cannot hold for the elements of this subgroup. We 
now investigate how the Lagrangian does transform under this subgroup. 

For the generator G6 we have 

a a  
E = q - + 4 7 ,  

a4 a4 

so that for the harmonic oscillator Lagrangian (19) we obtain, from (36): 

E{L}  = 2L. (46) 
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From (37) we then have 

L‘ = 2L, 

and (32a) gives for the new Lagrangian, to first order: 

i = (1 - 2 8 ) ~ .  (47) 
Equation (47) states that, to first order, the new Lagrangian is simply a multiple of 

the old. In fact, it is easy to show that this holds for all orders, and not just for the 
infinitesimal transformation. The finite transformation associated with G6 may be 
written 

Q = eeq, 

T = t, 

Using this in (7), with L = Q 2  - Q 2 ,  we find 
i = (49) 

Expanding (49) to first order gives (47), as of course it should. 
Comparing (44) with (9) we see that indeed the action integral is not invariant 

under this subgroup, so that a Noether-type conserved quantity does not exist. 
Nevertheless, the equation of motion is invariant under the subgroup, since the 
Lagrangian is simply multiplied by a constant. It therefore follows that solutions are 
transformed into solutions under this subgroup. 

The transformation properties of the Lagrangian under the groups generated by 
G7 and Gs are somewhat more complicated. For the generator G7 we have, from 
(42): 

6 = q sin t, 

q = q cos t. (506)  

(51) 

(52) 

(53) 

2 

From (36) we find that, for the Lagrangian (19): 

E{L) = (24 cos t)L - (24 sin t ) (q2 + q 2 )  

L’ = (3q cos t ) ~  - (4 sin t ) ( d 2  + 3q2). 

i = L - e[(3q cos t)L - (4 sin t ) (d2  + 3q2)]. 

and from (37) 

We thus have, for the first-order change in L, from (32a): 

Because of our method of derivation, it is clear that the Euler equation associated with 
(52) must lead to the harmonic oscillator equation of motion. Carrying out the 
calculation, we find 

- (”) - ;;’- (Ci;+q)3C4 
dt a4 (54) 

where C4 is the conserved quantity defined by (26d). Setting the right-hand side of 
(54) to zero, we obtain 

d + q = O  (55a )  
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and 
c4 = 0. 

Equation (55a) is precisely the harmonic oscillator equation of motion; furthermore, 
the general solution of (556) is 

4 = A sin t, 

which also satisfies (55a). Therefore no spurious solutions are introduced by the 
second factor in (54), and the Lagrangian L’ leads to the same solutions as the 
Lagrangian (1 9). 

The situation is similar for the generator Gg; in this case 

L’ = -(34 sin t)L - (4 cos t ) ( d 2  + 34’). 

L = ( q 2 - q 2 ) K + f ( q ,  t ) ,  (56) 

It is well known that any Lagrangian of the form 

where K is a constant, leads to the same Euler equation as the harmonic oscillator 
Lagrangian (19), and is therefore said to be equivalent to it .  As we have seen, 
however, there exist Lagrangians which are equivalent to (19) without being of the 
form (56). The existence of harmonic oscillator Lagrangians not of the form (56) has 
previously been noted by Rosen (1969), who has given a procedure for producing a 
certain class of them. The Lagrangians discussed by Rosen are functions only of q and 
4, and are therefore distinct from those we have described, which depend explicitly on 
the time. 

Finally, it is noteworthy that the operators 

J1= Gq- Gg, ( 5 7 a )  

J2 = G3 + G7, (57b) 

J3  = Gs, (57c)  
form the Lie algebra of the three-dimensional rotation group. This subgroup of the 
harmonic oscillator symmetry group has been used (Wulfman and Wybourne 1976) to 
investigate the periodicity of solutions, without using the properties of the solutions 
themselves. It is interesting that one must use G7 and Gs to form the algebra (57); 
thus, if attention had been confined only to those groups which yield conserved 
quantities via Noether’s theorem, the subgroup (57) would not have been available. 
This seems to indicate that for certain considerations it may be advantageous to deal 
with the complete symmetry group of a system, rather than just the Noether subgroup. 
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